
Gravity Inside A Spherical Shell 

 

We wish to calculate the gravity 

at an arbitrary point P inside a 

thin, uniform, spherical shell of 

mass M.  The figure at right 

shows the geometry we will use.  

We have spherical symmetry, so 

we can always draw a line 

through P and the center of the 

sphere.  We will call this line 

the x-axis, and we will put the 

origin of the x-axis at P.   

 

We start with F = GMm / r
2
.  

We can assume a small mass m0 

to be at point P, but the mass in the sphere is at varying distance from P, so we must use dF = Gm0 dm / r
2
 

and come up with a way to integrate over all the infinitesimal dm’s. 

 

The yellow element labeled dm in the figure, and the one below it labeled “symmetric element”, are parts 

of a circle of radius a that runs around the sphere.  We will choose this circular slice to be our dm for one 

very good reason:  all parts of the slice are at an equal distance r from point P.  Note that for any element 

on the circle there is an identical element on the opposite side of the circle (as illustrated by the two 

yellow spots) so the force components perpendicular to the x-axis always cancel.  The net gravitational 

force at P is only along the x-axis.  This reduces our apparently 3D problem to a 1D integral where  

dF = Gm0 dm / r
2
 multiplied by the cosine of the angle between r and the x-axis, which is just x/r.  We 

have dF = Gm0 x dm / r
3
 as the force at P. 

 

We want to integrate along x, so let’s eliminate r from the equation for dF.  We note from the figure that 
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.  Solving the red equation for a
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 and substituting it into the green 
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dF = Gm0 x dm / (R
2
 – P

2
 – 2Px)

3/2
 as the force at P. 

 

Turning our attention to dm, we know from similar problems with uniform objects that dm can be written 

as a ratio:  dm / M = (area of circular slice)/(area of the sphere), or dm = (M dA)/(4πR
2
).  To find dA, we 

note that the radius of the slice is a, so its length is 2πa.  The width of the slice (as shown in the small 

inset) is Rdθ, so dA = 2πa Rdθ.  From the figure we have R sinθ = a, so dA = 2πR
2
 sinθ dθ. 

 

We now have dm = M(2πR
2
 sinθ dθ)/(4πR

2
) = ½ M sinθ dθ.  Well and good, but we need to integrate 

over dx, not dθ.  Fortunately, the figure shows us that R cosθ = P + x, so taking the derivative of both 

sides yields –R sinθ dθ = dx.  Substitution for dθ in the equation for dm gives us dm = – ½ (M/R) dx. 

 

Our equation for the differential force now reads dF = –(GMm0/2R)(x dx)/(R
2
 – P

2
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3/2
.  We finally 

have nothing in the equation except x and constants, so we are ready to integrate.  We look up the integral 

in our favorite table and find F = –(GMm0/2RP
2
)(R
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. 

 

We set x = 0 to be at P, so our limits of integration run from x = R – P  to  x = –R – P.  Evaluating the 

upper limit:  (R
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lower limit:  (R
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 = R.  We are left 

with  F = –(GMm0/2RP
2
)(R – R) = zero!! 



 

Since our choice of point P was arbitrary, this result holds for anywhere inside the shell, whether you are 

one millimeter from the wall or in the center.  And since a thick shell can be thought of as a series of 

nested thin shells, the result still holds regardless of how thick the shell is.  We don’t even need the thin 

shells to be made of the same material:  the total mass M is outside the integral and has nothing to do with 

the cancellation of forces, so it matters not if the sphere is made of paper or lead.  The only thing that 

matters is that the shells be spherically symmetric. 

 

But, beware when applying this result to a solid sphere:  if you descend into the Earth (for example), then 

only that part of the Earth which is above you forms a spherical shell where the net gravitation cancels to 

zero.  The part of the Earth still below you will still exert an attractive force with whatever mass it has.  

The only spot inside a solid sphere where the net gravity is zero is the center. 

 

For a uniform sphere (which the Earth isn’t), it is easy to derive how the gravity must vary as one moves 

down into the sphere.  The mass fraction of a uniform sphere which is inside a radius r is just the ratio of 

the volume inside r compared to the volume of the entire sphere, or m / M = (
4
/3πr

3
) / (

4
/3πR

3
) = (r/R)

3
.  

We have just finished proving that all the mass outside r must produce zero gravity, so the gravity is 

entirely due to the mass inside r, or F = Gm1m2/r
2
 = Gm1[M (r/R)

3
] / r

2
 = Gm1Mr / R

3 
.  We recognize that 

GM / R
2
 is the (constant) surface gravity of the sphere, so F/m1 = g (r/R).  The acceleration due to gravity 

for a uniform sphere is g at the surface, and decreases linearly to zero at the center.   

 

 


