
7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its 
initial kinetic energy is Ki = 0 and its initial potential energy is Ui = Mgh where 

6.0sin 30 3.0 mh    (we are using the edge of the roof as our reference level for 
computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5) 
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Here we use v to denote the speed of its center of mass and  is its angular speed — at 
the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we 
can set v = R = v where R = 0.10 m. Using I MR 1

2
2  (Table 10-2(c)), conservation of 

energy leads to 
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The mass M cancels from the equation, and we obtain 
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(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the 
origin at the position of the center of mass when the ball leaves the track (the “initial” 
position for this part of the problem) and take +x leftward and +y downward. The result 
of part (a) implies v0 = R = 6.3 m/s, and we see from the figure that (with these positive 
direction choices) its components are 
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The projectile motion equations become 
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We first find the time when y = H = 5.0 m from the second equation (using the quadratic 
formula, choosing the positive root): 
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Then we substitute this into the x equation and obtain x  54 0 74 4 0. . .m s s m.b gb g  

 
 
 
 



 

  

 

10. From I MR 2
3

2  (Table 10-2(g)) we find 
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It also follows from the rotational inertia expression that 1

2
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2 2I MR  . Furthermore, 

it rolls without slipping, vcom = R, and we find 
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(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is 
rotational, or  

Krot = (0.4)(20 J) = 8.0  J. 
 
(b) From 2 21

rot 3 8.0 JK M R    (and using the above result for M) we find 
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which leads to vcom = (0.15 m)(20 rad/s) = 3.0 m/s. 
 
(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30° = 
0.50 m. Mechanical energy conservation leads to 
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which yields (using the values of M and h found above) Kf = 6.9 J. 
 
(d) We found in part (a) that 40% of this must be rotational, so 
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which yields f = 12 rad/s and leads to 
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11. With app
ˆ(10  N)iF 


, we solve the problem by applying Eq. 9-14 and Eq. 11-37. 

 
(a) Newton’s second law in the x direction leads to 
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In unit vector notation, we have ˆ( 4.0 N)isf  


, which points leftward. 

 
(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be  
 

|| = |acom| / R = 2.0 rad/s2, 
 
from Eq. 11-6. The only force not directed toward (or away from) the center of mass is 
f s ,  and the torque it produces is clockwise: 
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which yields the wheel’s rotational inertia about its center of mass: I  0 60. .kg m2  
 
 
18. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives 
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where the positive direction is upward. We use 2

com / 2I MR  where the radius is R = 

0.32 m and M = 116 kg is the total mass (thus including the fact that there are two disks) 
and obtain 
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which yields a = –g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the 
center of mass acceleration is 0.19 m/s2.  
 
(b) As observed in §11-4, our result in part (a) applies to both the descending and the 
rising yo-yo motions. 
 
(c) The external forces on the center of mass consist of the cord tension (upward) and the 
pull of gravity (downward). Newton’s second law leads to 
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 = 1.1  103 N. 

 
(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the 
cord. 
 
(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, 
of course, g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain 
the same result. 
 
(f) Since the tension also depends on mass, then the larger yo-yo will involve a larger 
cord tension. 
 


