46. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we know \(C_1 \) and \(C_2 \). From Eq. 25-9,

\[
C_2 = \frac{\varepsilon_0 A}{d} = 2.21 \times 10^{-11} \text{ F},
\]
and from Eq. 25-27,

\[
C_1 = \frac{k\varepsilon_0 A}{d} = 6.64 \times 10^{-11} \text{ F}.
\]

This leads to

\[
q_1 = C_1 V_1 = 8.00 \times 10^{-10} \text{ C}, \quad q_2 = C_2 V_2 = 2.66 \times 10^{-10} \text{ C}.
\]

The addition of these gives the desired result: \(q_{\text{tot}} = 1.06 \times 10^{-9} \text{ C} \). Alternatively, the circuit could be reduced to find the \(q_{\text{tot}} \).

47. The capacitance is given by

\[
C = \kappa C_0 = \kappa\varepsilon_0 A/d,
\]
where \(C_0 \) is the capacitance without the dielectric, \(\kappa \) is the dielectric constant, \(A \) is the plate area, and \(d \) is the plate separation. The electric field between the plates is given by \(E = V/d \), where \(V \) is the potential difference between the plates. Thus, \(d = V/E \) and \(C = \kappa\varepsilon_0 AE/V \). Thus,

\[
A = \frac{CV}{\kappa\varepsilon_0 E}.
\]

For the area to be a minimum, the electric field must be the greatest it can be without breakdown occurring. That is,

\[
A = \frac{(7.0 \times 10^{-8} \text{ F})(4.0 \times 10^3 \text{ V})}{2.8(8.85 \times 10^{-12} \text{ F/m})(18 \times 10^6 \text{ V/m})} = 0.63 \text{ m}^2.
\]

48. The capacitor can be viewed as two capacitors \(C_1 \) and \(C_2 \) in parallel, each with surface area \(A/2 \) and plate separation \(d \), filled with dielectric materials with dielectric constants \(\kappa_1 \) and \(\kappa_2 \), respectively. Thus, (in SI units),

\[
C = C_1 + C_2 = \frac{\varepsilon_0 (A/2)\kappa_1}{d} + \frac{\varepsilon_0 (A/2)\kappa_2}{d} = \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1 + \kappa_2}{2} \right)
\]

\[
= \frac{(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)(5.56 \times 10^{-4} \text{ m}^2)}{5.56 \times 10^{-3} \text{ m}} \left(\frac{7.00 + 12.00}{2} \right) = 8.41 \times 10^{-12} \text{ F}.
\]

49. We assume there is charge \(q \) on one plate and charge \(-q \) on the other. The electric field in the lower half of the region between the plates is

\[
E_1 = \frac{q}{\kappa_1\varepsilon_0 A}.
\]
where A is the plate area. The electric field in the upper half is

$$E_2 = \frac{q}{\kappa_2 \varepsilon_0 A}.$$

Let $d/2$ be the thickness of each dielectric. Since the field is uniform in each region, the potential difference between the plates is

$$V = \frac{E_1 d}{2} + \frac{E_2 d}{2} = \frac{qd}{2 \varepsilon_0 A} \left[\frac{1}{\kappa_1} + \frac{1}{\kappa_2} \right] = \frac{qd}{2 \varepsilon_0 A} \frac{\kappa_1 + \kappa_2}{\kappa_1 \kappa_2},$$

so

$$C = \frac{q}{V} = \frac{2 \varepsilon_0 A \kappa_1 \kappa_2}{d \kappa_1 + \kappa_2}.$$

This expression is exactly the same as that for C_{eq} of two capacitors in series, one with dielectric constant κ_1 and the other with dielectric constant κ_2. Each has plate area A and plate separation $d/2$. Also we note that if $\kappa_1 = \kappa_2$, the expression reduces to $C = \kappa_1 \varepsilon_0 A/d$, the correct result for a parallel-plate capacitor with plate area A, plate separation d, and dielectric constant κ_1.

With $A=7.89 \times 10^{-4} \text{m}^2$, $d=4.62 \times 10^{-3} \text{m}$, $\kappa_1 = 11.0$, and $\kappa_2 = 12.0$, the capacitance is

$$C = \frac{2(8.85 \times 10^{-12} \text{C}^2/\text{N} \cdot \text{m}^2)(7.89 \times 10^{-4} \text{m}^2)(11.0)(12.0)}{4.62 \times 10^{-3} \text{m} \cdot 11.0 + 12.0} = 1.73 \times 10^{-11} \text{F}.$$

50. Let

$$C_1 = \varepsilon_0 (A/2) \kappa_1 / 2d = \varepsilon_0 A \kappa_1 / 4d,$$

$$C_2 = \varepsilon_0 (A/2) \kappa_2 / d = \varepsilon_0 A \kappa_2 / 2d,$$

$$C_3 = \varepsilon_0 A \kappa_3 / 2d.$$

Note that C_2 and C_3 are effectively connected in series, while C_1 is effectively connected in parallel with the C_2-C_3 combination. Thus,

$$C = C_1 + \frac{C_2 C_3}{C_2 + C_3} = \varepsilon_0 A \frac{\kappa_1}{4d} + \frac{(\varepsilon_0 A / d) (\kappa_2 / 2) (\kappa_3 / 2)}{\kappa_2 / 2 + \kappa_3 / 2} = \varepsilon_0 \frac{A}{4d} \left(\kappa_1 + \frac{2\kappa_2 \kappa_3}{\kappa_2 + \kappa_3} \right).$$

With $A=1.05 \times 10^{-3} \text{m}^2$, $d=3.56 \times 10^{-3} \text{m}$, $\kappa_1 = 21.0$, $\kappa_2 = 42.0$ and $\kappa_3 = 58.0$, we find the capacitance to be

$$C = \frac{(8.85 \times 10^{-12} \text{C}^2/\text{N} \cdot \text{m}^2)(1.05 \times 10^{-3} \text{m}^2)(21.0 + \frac{2(42.0)(58.0)}{42.0 + 58.0})}{4(3.56 \times 10^{-3} \text{m})} = 4.55 \times 10^{-11} \text{F}.$$