1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a distance \(r \) from the wire, is given by

\[
B = \frac{\mu_0 i}{2\pi r}
\]

With \(r = 20 \text{ ft} = 6.10 \text{ m} \), we have

\[
B = \frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(100 \text{ A})}{2\pi(6.10 \text{ m})} = 3.3 \times 10^{-6} \text{ T} = 3.3 \mu \text{T}.
\]

(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass reading.

7. (a) Recalling the *straight sections* discussion in Sample Problem — “Magnetic field at the center of a circular arc of current,” we see that the current in the straight segments collinear with \(P \) do not contribute to the field at that point. Using Eq. 29-9 (with \(\phi = \theta \)) and the right-hand rule, we find that the current in the semicircular arc of radius \(b \) contributes \(\mu_0 i \theta/4\pi b \) (out of the page) to the field at \(P \). Also, the current in the large radius arc contributes \(\mu_0 i \theta/4\pi a \) (into the page) to the field there. Thus, the net field at \(P \) is

\[
B = \frac{\mu_0 i \theta}{4} \left(\frac{1}{b} - \frac{1}{a} \right) = \frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(0.411 \text{ A})(74^\circ \cdot \pi/180^\circ)}{4\pi} \left(\frac{1}{0.107 \text{ m}} - \frac{1}{0.135 \text{ m}} \right)
\]

\[
= 1.02 \times 10^{-7} \text{ T}.
\]

(b) The direction is out of the page.

11. (a) \(B_{r_1} = \mu_0 i_1 / 2\pi r_1 \) where \(i_1 = 6.5 \text{ A} \) and \(r_1 = d_1 + d_2 = 0.75 \text{ cm} + 1.5 \text{ cm} = 2.25 \text{ cm} \), and \(B_{r_2} = \mu_0 i_2 / 2\pi r_2 \) where \(r_2 = d_2 = 1.5 \text{ cm} \). From \(B_{r_1} = B_{r_2} \) we get

\[
i_2 = i_1 \left(\frac{r_2}{r_1} \right) = (6.5 \text{ A}) \left(\frac{1.5 \text{ cm}}{2.25 \text{ cm}} \right) = 4.3 \text{ A}.
\]

(b) Using the right-hand rule, we see that the current \(i_2 \) carried by wire 2 must be out of the page.

12. (a) Since they carry current in the same direction, then (by the right-hand rule) the only region in which their fields might cancel is between them. Thus, if the point at which we are evaluating their field is \(r \) away from the wire carrying current \(i \) and is \(d - r \) away from the wire carrying current \(3.00i \), then the canceling of their fields leads to

\[
\frac{\mu_0 i}{2\pi r} = \frac{\mu_0 (3i)}{2\pi(d-r)} \quad \Rightarrow \quad r = \frac{d}{4} = 16.0 \text{ cm} = 4.0 \text{ cm}.
\]
(b) Doubling the currents does not change the location where the magnetic field is zero.

15. (a) As discussed in Sample Problem — “Magnetic field at the center of a circular arc of current,” the radial segments do not contribute to \vec{B}_r and the arc segments contribute according to Eq. 29-9 (with angle in radians). If \hat{k} designates the direction “out of the page” then

$$\vec{B} = \frac{\mu_0 (0.40 \text{ A})(\pi \text{ rad})}{4\pi (0.050 \text{ m})} \hat{k} - \frac{\mu_0 (0.80 \text{ A})(2\pi/3 \text{ rad})}{4\pi (0.040 \text{ m})} \hat{k} = -(1.7 \times 10^{-6} \text{ T}) \hat{k}$$

or $|\vec{B}| = 1.7 \times 10^{-6} \text{ T}$.

(b) The direction is $-\hat{k}$, or into the page.

(c) If the direction of i_1 is reversed, we then have

$$\vec{B} = -\frac{\mu_0 (0.40 \text{ A})(\pi \text{ rad})}{4\pi (0.050 \text{ m})} \hat{k} - \frac{\mu_0 (0.80 \text{ A})(2\pi/3 \text{ rad})}{4\pi (0.040 \text{ m})} \hat{k} = -(6.7 \times 10^{-6} \text{ T}) \hat{k}$$

or $|\vec{B}| = 6.7 \times 10^{-6} \text{ T}$.

(d) The direction is $-\hat{k}$, or into the page.

16. Using the law of cosines and the requirement that $B = 100 \text{ nT}$, we have

$$\theta = \cos^{-1}\left(\frac{B_1^2 + B_2^2 - B^2}{-2B_1B_2}\right) = 144^\circ,$$

where Eq. 29-10 has been used to determine B_1 (168 nT) and B_2 (151 nT).

27. We use Eq. 29-4 to relate the magnitudes of the magnetic fields B_1 and B_2 to the currents (i_1 and i_2, respectively) in the two long wires. The angle of their net field is

$$\theta = \tan^{-1}(B_2/B_1) = \tan^{-1}(i_2/i_1) = 53.13^\circ.$$